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Abstract

As one of the fundamental vision tasks, face alignment has attracted a tremendous
amount of efforts and achieved significant improvement over the decades. While the
state-of-the-art works fairly well on the lab datasets and certain face images in the wild,
it may easily fail in front of large pose variation, e.g., profile. In the worst case, the in-
visible landmarks may crash the initial models and thus limit many powerful models that
only work well within a certain range using reliable features. To that end, we propose
a new deep evolutionary model to integrate 3D Diffusion Heap Maps (DHM) to com-
pensate for the invisible landmarks issue in large pose variation. Our contributions are
summarized as: first, we introduce a sparse 3D DHM to assist the initial modeling under
extreme pose conditions; second, a simple yet effective CNN feature is extracted and fed
to recurrent neural networks for evolutionary learning. Additionally, we propose a Recur-
rent HourGlass (RHG) network that boost our evolutionary learning through HourGlass
and LSTM module. Extensive experiments on three popular face alignment databases
demonstrate the advantage of the proposed models over the state-of-the-art, especially
under large-pose conditions. We also discuss and analyze the limitations of our models
and future research work.

1 Introduction

Face recognition and related application becomes increasingly popular, especially with the
advances of deep learning. To name a few, face identification/verification [27], gaze detec-
tion [12], virtual face make-up [11], age synthesis [9], etc. Nonetheless, almost all of them
heavily rely on face alignment that automatically locates predefined key points on a face. It
has been treated as one of fundamental problems in real-world face recognition systems.
Recent research indicates that for moderate poses, illuminations, and expressions of face
images in the wild, precisely detecting facial key points is feasible. Notably faces in photos
are not always in medium poses where the yaw angle is less than 45° and all the landmarks
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(b)
Figure 1: Landmarks of (a) traditional method SDM and (b) our 3D DHM on different poses.
The red dots indicate invisible landmarks.

(b)

Figure 2: Comparison between (a) original faces and (b) misguidance faces generated by
BFM.

are visible [29]. Faces in the wild rendering large poses will, however, fail even the most
advanced face alignment algorithms. We analyze and detail the reasons as the followings:

Feature: Face alignment methods heavily rely on the features extracted from the image.
2D face images in large poses would hide some landmarks due to self-occlusion. When
faces deviate from the frontal view, we can only trust those visible landmarks and use them
to estimate the location of the invisible ones. Therefore, the alignment accuracy degrades
significantly given more invisible landmarks.

Model: Face alignment can be treated as a non-linear optimization problem regarding to
deformability of face. One solution is to map landmarks from 2D location space to feature
space. This makes senses in medium poses but would fail in case of large poses where half of
the key points are lost. Figure | shows the comparison between a representative traditional
method [23] and ours in large-pose alignment tasks. To make up the information loss caused
by self occlusion in large pose cases, 3D models are considered before regression. Consid-
ering the popular 3D approach Basel Face Model (BFM) [2] trained on only 200 people, the
generated 3D dense model may misguide the regression process. From Figure 2, we can see
the warped images by BFM fit the poses with minor difference over different races. Thus,
we prefer a small and sparse 3D model for efficacy.

Data: While we can get access to many faces with landmarks from different face datasets
nowadays, most of them are labeled by the human. Among them, most of the medium-pose
data is labeled fairly well for training alignment models. Unfortunately, when the ground
truth landmarks are self-occluded and become completely invisible, people have to guess
the true location. As a result, those invisible manually labeled landmarks turn to be very
unreliable, and confuse or even fail the model.

Contributions: We mainly focus on the first two challenges: feature and model in this
work, thanks to the recently released large facial landmark datasets [4, 29]. To summarize,
the contributions of this paper are:

e We propose a simple yet robust alignment feature learning paradigm using 3D Dif-
fusion Heap Maps (DHM) and CNN to create high-level reliable features containing
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Figure 3: Framework overview. Note we also show the 3D diffusion heat maps (under the
input face image) calculated by Basel Face Model, and the final heat maps including the
invisible landmarks which, however, are skipped by many 2D face alignment models.

both 2D and 3D information. We further investigate HourGlass [25] and LSTM [10]
to upgrade our evolutionary learning paradigm, and achieve better performance. Note
that our DHM is calculated from 3D model and only have 3 channels while 3DFAN
[4] has 68 channels. This reduces the computation cost significantly.

e We cast face alignment to a deep evolutionary model with both 2D texture and 3D
structure. Specifically, we use RNN to model the dynamics of the least square system.
The system overview can be found in Figure 3.

e We conduct extensive experiments and improve the performance on a few benchmarks.
We outperform the state-of-the-art by a large margin and show the robustness on both
the original dataset and re-annotated AFLW2000-3D dataset.

2 Related work

2D Face Alignment: The first milestone work of 2D face alignment is ASM [6], followed
by many successful non-deep algorithms including AAM [7] and Constrained Local Method
(CLM) [1] that considered the local patches around the facial landmarks as the features and
used constrained shape for initializing. Recently, critical works include tree-based models
[15, 18] which improved the speed of face alignment to more than 1000 frames per second.
Xiong et al. demonstrated the Supervised Descent Method [23] with the cascade of weak
regressors for face alignment, and achieved the state-of-the-art performance [26]. Zhu et
al. extended the work [26] and presented a new strategy [28] for large poses alignment by
searching the best initial shape. Along with the spread of deep learning in Al is its successful
applications on face alignment, specifically, Convolutional Neural Network (CNN). Sun et
al. [20] firstly employed CNN model for face alignment tasks with a raw face as the input and
conduct regression with high-level features. Differently, Trigeorgis et al. presented a RNN
based approach with the philosophy of Xiong’s work [23]. Another extension of SDM called
Global Supervised Descent Methods (GSDM) [24] tried to solve the large poses problem by
dividing the training space into different descent spaces. All these face alignment methods
only use 2D information and most of them use cascade method [15, 23, 26] and local patch
features [1, 7, 22, 23]. Differently, we suggest an integration of global 2D and 3D deep
evolutionary network to overcome the information loss caused by 2D patch features.
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Figure 4: Illustration of (a) generating 3D diffusion heat maps; (b) the HourGlass module.
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3D Face Alignment: As 3D face model can maintain the depth information well against
pose issues, a bunch of 3D face alignment methods and 3D face datasets become increasingly
popular. Dollér et al. [8] estimated the landmarks on large poses through a 3D Morphable
model (3DMM) with cascade regression in 2010. Zhu and Jourabloo et al. [13, 29] presented
CNN based model fitting a 3DMM to a 2D face through a cascade method, along with the
facial key points. Besides, Zhu’s work [29] also used three additional channels provided
by the initial 3D face model in each iteration. A very dense 3D alignment model has been
demonstrated by Liu et al. [14, 17] and achieved good performance. On the other hand, the
release of a few benchmarks significantly promotes the research in this line. For example,
3D face training dataset called 300W-LP, and a testing dataset called AFLW-20003D were
offered in [29] recently. Another 3D alignment dataset called LS3D-W was published by
Bulat et al. [4] with about 230,000 images, and the deep learning models based on this
dataset, e.g., HourGlass (HG) [3, 4, 25] have achieved impressive performance very recently.
In this paper, we use sparse 3D heat maps together with the original image as input, whereas
most of the previous works use dense 3D models. Jointly working with a plain RNN and a
two-layer CNN, we achieve the state-of-the-art performance.

3 Algorithms

In this section we will detail our new framework (Figure 3) including two exclusive compo-
nents: (1) 3D diffusion heat maps (DHM) generation; (2) deep evolutionary 3D heat maps.

3.1 3D Diffusion Heat Maps

To get feasible 3D landmarks in large poses, one of the reasonable ways is to build a 3D
model of the face and simulate the details of a real face such as scale, expressions, and
rotations, which can be formulated by the state-of-the-art 3DMM [2]. Typically, it represents
factors of a 3D face by:

S=S + Eigpid + Eexppexp (D

where S is a predicted 3D face, S is the mean shape of the 3D face, Ejq is principle axes based
on neutral 3D face, p;4 is shape parameters, Ecxp, is principle axes based on the increment
between expressional 3D face and neutral 3D face, and peyp is expression parameters. In our
framework, the Ejq and Eey;, are calculated from a popular 3D face model named BFM [2].
Then we project the 3D face model by Weak Perspective Projection:

F(p)=fXMxRXS+1ty 2)


Citation
Citation
{Doll{á}r, Welinder, and Perona} 2010

Citation
Citation
{Jourabloo and Liu} 2016

Citation
Citation
{Zhu, Lei, Liu, Shi, and Li} 2016

Citation
Citation
{Zhu, Lei, Liu, Shi, and Li} 2016

Citation
Citation
{Jourabloo and Liu} 2017

Citation
Citation
{Liu, Jourabloo, Ren, and Liu} 2017

Citation
Citation
{Zhu, Lei, Liu, Shi, and Li} 2016

Citation
Citation
{Bulat and Tzimiropoulos} 2017{}

Citation
Citation
{Bulat and Tzimiropoulos} 2017{}

Citation
Citation
{Bulat and Tzimiropoulos} 2017{}

Citation
Citation
{Yang, Liu, and Zhang} 2017

Citation
Citation
{Blanz and Vetter} 2003

Citation
Citation
{Blanz and Vetter} 2003


SUN, SHAO, XIA, FU: DEEP EVOLUTIONARY 3D DHM FOR FACE ALIGNMENT 5

where the F(p) is the projected 3D face model, f is the scale, M is orthographic projected
. 1 00 . . . . . .
matrix ( 01 0 ) R is the rotation matrix written in [ Tpitch  Tyaw  Troll } , S is the
3D shape model calculated from Eq. (1), and #,4 is the transition vector with the location
coordinate x and y. Since F is the function of the parameter p, p can be written as p =
[ S R ta pid Pexp ] We can generate the aligned 3D shape through Eq. (1) and Eq.
(2). Afterwards, with the key point index provided by BFM, we will have precise locations
of key points on the 3D model. To generate sparse 3D features, we normalize the coordinates
in the 3D model around the key points. For a specific color channel i, the process could be

described as: 5:00)
(k) = J ;
map; (k) max(S;) —min(S;)’ je{xyz} 3)

where “map;()” is the 3D heat map with three channels R, G, and B, and the 3D coordinates
triplet {x,y,z} are mapped to the three channels. S;(k) means the value of the 3D shape at
the location of the kg, landmarks. To incorporate the locality and increase the robustness of
each landmark, we suggest to extend the 3D heat maps by a Gaussian diffusion map centered
at each landmark’s location, and thus, we obtain 3D DHM for robust representation. Specifi-
cally, we generate a set of heat maps centered at the landmarks and ranged by a 2D Gaussian
with standard deviation equals to 1 pixel (See Figure 4(a)). This strategy assures our frame-
work can extract the features of the whole image with different weights instead of discarding
the features located at a non-landmarks position. Note we conduct the normalization and
diffusion on each single channel/axis, independently.

Discussions: Recall the basic inputs of existing models usually include two separate
parts: (1) an image; (2) initial mean landmarks. These methods usually depend on the initial
landmarks for facial features for better performance, i.e., the features are usually extracted
by cropping the image centered at initial landmarks. As discussed earlier, this strategy may
degrade the performance in large pose situations, as the features centered at initial landmarks
have significantly deviated from the ground truth. See the “Input” in Figure 3 (with face
image and heap map). Thus, these features will misguide the learning model or regressor
and probably converge to local trap. In contrast, we design a novel paradigm to address
this issue. We keep the whole image as the input for robust facial feature learning and
propose to employ sparse 3D shape information as the complement. This avoids the issues
of misguidance by the incorrect initial landmarks that propagate to the local features.

3.2 Deep Evolutionary Diffusion Heat Maps

We offer an end-to-end trainable deep structure for face alignment in this section given the
3D heat maps and stacked image /. Since we have already generated DHM using 3D land-
marks, we concentrate on: (1) discriminative and robust representation of image plus 3D
DHM; (2) 3D DHM evolution; (3) recurrent HourGlass framework.

First, to formulate both discriminative and robust alignment features, we propose to use a
plain CNN that absorbs both 2D and 3D information in a stacked structure. While handcraft
features or a direct use of 3D information may work, our practice reflects that they are less
competitive than the well developed CNN model. The CNN model here can extract high-
level features critical to alignment, and we are especially interested in global CNN features.
In our experiments, we also find that an off-the-shelf CNN model such as VGG-net [19]
works fairly well in our case. Note we only use two convolutional layers to fuse the 3D
information and RGB information which proves effective in our experiments.
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Figure 5: Intermediate results in RNN with state number ¢ = 4 where changes of the heat
maps can be seen. The heat map is scaled heavily in step 1 and deformed in step 2 to 4 with
color being changed relatively. Finally, the heat map is well aligned on the face.

Algorithm 1 Deep 3D Evolutionary Diffusion Heat Maps

Inputs: Image /, initial values: po = [pexp; Pid; fo, Ro:t240)
for i = 0 to IterNum do

generate S; in 3D

map = zeros()

for j =0to 3 do

Silj]— = min(S;[j])
Silj]/ = (max(S;[;]) —min(S;[/]))
mapl[S;[0], Si[1], j] = Si[/]]

end for

extract features ¢X(cat (I, map), Ceonv2)
P = RNN(6*(cat(1,map)))
end for

Second, we resort to an evolutionary modeling for the alignment features. RNN has been
widely applied to temporal data, as it is able to account for temporal dependencies. In train-
ing, RNN maintains the topology of feed forward networks while the feedback connections
enable the representation of the current state of the system which encapsulates the informa-
tion from the previous inputs, which can help update the parameter p in the loops within the
networks. Mathematically, the update rules can be written as:

ht+1 - tanh( zhCu)nVZ([I map]) + Whhht) (4’)

where /, is the hidden state of the step ¢, Ceomo ([, map)) is the convolutional output features
extracted from the input image / and the heat maps “map" generated by Eq. (2). Wy, is the
weight from input to the hidden layer and the Wy, is the weight from hidden layer to hidden
layer. With the hidden features &, we can model the update rule for p using p; 1 = p; +Wiohy,
where p; is the parameters in the step ¢, Wj,, is the weight from hidden layer to the output.
Thus, from Eq. (4), we can prove that all the parameters in the step ¢ + 1 are based on the
state of the step 7. Since the whole image has been engaged as the input in each step, we may
rectify the errors caused by the previous steps. Besides, we have the generated heat maps
to emphasize the change in the previous step so that the whole network can converge. An
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illustration of evolutions of 3D diffusion heat maps in four states can be found in Figure 5.
During the training, we define our loss function as

T
min]|So + Y Wi (p) = 5°[13 )
t=1

where S* is the ground truth shape, F indicates the matrix Frobenius norm, 7 is the total
number of the steps. The complete algorithm is shown in Algorithm 1.

The optimized p in the output layer will generate 3D landmarks for the test face which
can be identified in the output of Figure 3. Here we suggest using Vanilla-RNN for simplicity.
The evolutionary 3D DHM and intermediate results can be found in Figure 5. Note we
update the parameters of the 3D model p instead of the landmarks themselves as we would
encourage the model to restrict the spatial relation of each landmark. The input is a 224 x
224 x 3 image stacked by heat maps. The output of RNN module is a 234-dimensional
parameter, which will be casted to a 3D face model using Eq. (2). We can use specific
vertices to find the landmark position.

Last, to explore the generality of our framework, we upgrade the CNN by a popular
stacked HourGlass module (See Figure 4 (b)), and RNN by LSTM. In later experiments,
we may compare with 3DFAN [4] that only uses HourGlass module resulting in inferior
performance. This also demonstrates our evolutionary learning strategy is more general.

4 Experiments

In this section, we will first detail the evaluation datasets for large pose face alignment. Then,
we conduct an analysis of the proposed method and evaluate different modules. Third, we
will compare with the state-of-the-art face alignment methods. Finally, we will discuss the
implementation details and some failure cases.

4.1 Dataset and Setting

We use 68-point landmarks to conduct fair comparisons with the state-of-the-art methods,
though our method can adapt to any numbers of landmarks. Note in the training process, we
may need 3D landmarks or parameters which are not always available. Thus, we estimate
the 3D information through [4] in this situation. Evaluation datasets are detailed below:

o 300W-LP: The dataset has four parts, a total of 61,225 samples across large poses
(1,786 from IBUG, 5,207 from AFW, 16,556 from LFPW and 37,676 from HELEN)
[29]. Note we used 58,164 images for training and 3,061 as the validation.

o AFLW2000-3D: The dataset is essentially a reconstruction by Zhu et al. [29] given
2D landmarks. Note we use it for testing with 2000 images in total.

e Re-annotated AFLW?2000-3D: The dataset is re-annotated by Bulat et al. [4] from
AFLW2000-3D given 2D landmarks. We use it for testing with 2000 images in total.

o LS3D-W: The dataset is also a re-annotated by Bulat et al. [4]. We use it for training
and testing to do a fair comparison. We use 218,595 images for training, and use
its sub-dataset Menpo-3D (8,955 images) for testing. Note this dataset only has 2D
landmarks projected from 3D space.
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Figure 6: (a) shows analysis of replacing 3D diffusion heat map and RNN model. (b) shows
the comparisons of AFLW3D dataset among ours and others. (c) shows the comparisons of
Reannotated-AFLW3D dataset among ours and others. (d) is the comparison results among
ours and some outstanding methods on Menpo3D dataset.

Figure 7: Results visualization of our method (top), 3DFAN (middle), and 3DDFA (bottom).
Our method has more accurate results on eyes and contours than other two methods.

As our focus is face alignment, we should reduce the negative effects of face detection. Thus,
the detected bounding box of each face is computed by ground-truth landmarks. To com-

pare with other methods, we use the same metric “Normalized Mean Error (NME)” defined
as NME = %Zf’: 1 M where the X and X* is predicted and ground truth landmarks,

respectively, N is the number of the landmarks, d is normalized distance computed by the
width and height of the bounding box using d = v/Wpbox X Avbox-

To learn the weights of the network, we use Adam stochastic optimization [16] with
default hyperparameters. The initial learning rate is 0.0001 for 300W-LP with exponential
decay of 0.95 every 2000 iterations, an initial learning rate of 0.0001 is employed in our
training process. The batch size is set to 50. The Recurrent HourGlass (HG) network starts
with a 7 x 7 convolutional layer with stride 2. A residual module and a round of max pooling
are added after it to bring the resolution down from 256 to 64. We use 3 stacked HG modules
to extract features and a LSTM [10] as our recurrent module. The initial learning rate is
0.001 and we set weight decay at epoch 5, 15, 30. The total number of epochs is 40. We use
RMSprop [21] as our optimizer. The training batch is 32 and validation batch is 16.

4.2 Performance Analysis of Our Model

In this section, we will demonstrate the advantage and necessity of two modules: (1) 3D
diffusion heat maps; (2) RNN for deep evolution.
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Table 1: Comparisons with state-of-the-art methods on ALFW2000-3D dataset and re-

annotated AFLW?2000-3D. We highlight the performance of our model in each setting.
Normalized Mean Error on ALFW2000-3D NME on re-annotated ALFW2000-3D
Method Name  [[0°30°][[30°60°][[60°90°][Mean|[0°30°][[30°60°][[60°90°]] Mean
DHM 275 | 4.21 691 |4.62| 2.28 | 3.10 6.95 4.11
DHM+RHG 252 | 321 576 |3.85| 2.25 | 3.05 4.21 3.17
3DFAN [4] 258 | 3.76 | 11.72 |6.02| 2.75 | 3.76 | 572 4.07
3DDFA [29] 378 | 4.54 793 |542] 482 | 571 10.93 7.15
3DDFA+SDM [29]| 3.43 | 4.24 7.17 |4.94| 323 | 4.04 8.17 5.15
MDM [22] 3.67 | 5.94 10.76 |6.45| 3.27 | 5091 9.77 6.31

ERT [15] 540 | 7.12 | 16.01 [10.55| 533 | 7.42 | 16.46 9.73
SDM [23] 3.67 | 494 9.76 |6.12 | 347 | 491 9.81 6.06
ESR [5] 4.60 | 6.70 | 12.67 |7.99| 475 | 7.10 | 14.10 8.65

Figure 8: Failure cases of our model.

First, we evaluate the importance of evolutionary 3D maps. Instead of using RNN, we
use a plain 3D-CNN structure. That is being said, we use the same 3D heat maps but replace
the RNN by a conventional CNN structure. The rest parts remain the same. Note we use
300W-LP dataset for training and AFLW2000-3D dataset for evaluation. Results of this
setting (3D-CNN) can be found in Figure 6(a).

Second, we keep the RNN structure and test the importance of 3D heat maps in our
framework. We replace the 3D module by initial 2D landmarks. Accordingly, we change the
output of the framework from a 234 x 1 vector to a 204 x 1 vector, which is the increment
of locations of predicted landmarks. The rest of framework remains the same. Note we also
use the same training and testing datasets. Result of this setting (2D-RNN) can be found in
Figure 6(a). It is easy to find out that the combination of both module performs best.

4.3 Comparisons with Existing Methods

In this section, we conduct comprehensive evaluations with the state-of-the-art methods.
Specifically, all methods are trained on the 300W-LP dataset including both ours and others.
All of the input faces are cropped by the bounding box calculated from landmarks. All com-
petitive methods have released their codes and thus, we optimize their models on 300W-LP
for a fair comparison. The competitive methods include: (1) ERT [15], SDM [23], 3DDFA
[29], MDM [22], 3DFAN [4]. After training with the same 300W-LP dataset, we evaluate
all methods on the ALFW?2000-3D dataset. The comparison results can be found in Figure
6 (b) and the quantitative results can be found in Table 1.

From the Figure 6(b) we can see that our method is the best on the AFLW2000-3D
dataset. However, we found that the performance of 3DFAN could be better according to the
work [4]. Bulat et al. claimed that the ground truth of the 300W-LP dataset and AFLW2000-
3D dataset were not so accurate. After their re-annotation, the model achieved very high
accuracy. For fair comparisons, we use their re-annotated data and results are shown in Fig-
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ure 6(c). From the figure, we can find that the result of our model is competitive with the
performance of 3DFAN. From the two experiments, we can prove that our method is very
robust and reliable regardless of the minor errors of labels. The visualization of three meth-
ods are shown in Figure 7. We also use the large dataset LS3D-W to train our framework.
Since there is no depth information, we use 2D-3D FAN model [4] to generate the depth
coordinates. Then we change the output of the final fully connected layer from a 234 x 1
vector to a 204 x 1 vector to represent 3D landmarks. 3DFAN is trained on the same dataset
for comparisons. The result is shown in Figure 6(d) where ours exhibits better performance.

We also illustrate some failure cases of our model in Figure 8 which indicate that our
model may be fragile given large-angle rolled faces or heavily occlusions. It will also fail if
the illumination is bad. The primary reason is the lack of faces of similar cases in the training
dataset, which is a common issue for all other methods. Possible solutions include adding
corresponding training data to approach the special case, or employ multiple initializations
to avoid local minimas. We can also use data augmentation to make the model robust.

5 Conclusions

In this paper, we focused on improving the face alignment algorithms with the sparse 3D
landmarks to approach the challenge of large poses. We presented a deep evolutionary frame-
work to progressively update the 3D heat maps to generated target face landmarks. First, we
proposed to use 3D diffusion heat maps as well as global 2D information as the robust repre-
sentation. Second, we demonstrated that an RNN based evolutionary learning paradigm was
able to model the dynamics of least square problems and optimize the facial landmarks. In
addition to prove the universality of our evolutionary learning strategy, we also proposed a
Recurrent HourGlass framework which achieved the state-of-the-art performance on popular
face alignment benchmarks. The results show the possibility of further improvement with
complicated structures in our evolutionary DHM strategy.
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